
1-4244-0910-1/07/$20.00 ©2007 IEEE.

GridCopy: Moving Data Fast on the Grid

Rajkumar Kettimuthu1,2, William Allcock1,2, Lee Liming1,2
John-Paul Navarro1,2, Ian Foster1,2,3

1Mathematics and Computer Science Division

Argonne National Laboratory, Argonne, IL 60439
2Computation Institute

The University of Chicago, Chicago, IL 60637
3Department of Computer Science

The University of Chicago, Chicago, IL 60637

{kettimut, allcock, liming, navarro, foster}@mcs.anl.gov

Abstract

An important type of communication in grid and
distributed computing environments is bulk data
transfer. GridFTP has emerged as a de facto standard
for secure, reliable, high-performance data transfer
across resources on the Grid. GridCopy provides a
simple GridFTP client interface to users and extensible
configuration that can be changed dynamically by
administrators to make efficient data movement in the
Grid easier for users.

1. Introduction

Because of the various specializations of each site in
Grid [1,2] environments and because some applications
require use of more than one site, application users
commonly have to move data between sites. For
example, the output of a large simulation computed at
one site may need to be archived at another site and
visualized for end users at a third site. This data is often
large, ranging from several hundred gigabytes to tens of
terabytes. The data may be stored in a small number of
large files or a large number of smaller files.

Data movement is not a productive activity, so the
time spent on it should be minimized. Above all, the
“hands-on” time spent by scientists or application users
to accomplish data movement must be minimized.
GridFTP [3–7] has been commonly used as data transfer
protocol in the Grid. The GridFTP protocol extends the
standard FTP protocol to provide a superset of the
features offered by the various Grid storage systems
currently in use. The protocol includes the following:

• Public-key-based Grid Security Infrastructure
(GSI) [8] and Kerberos support (both accessible

via GSS-API).
• Third-party control of data transfer.
• Parallel data transfer (one host to one host,

using multiple TCP [9] streams).
• Striped data transfer (m hosts to n hosts,

possibly using multiple TCP streams if also
parallel).

• Manual setting of the TCP buffer size.
• Partial file transfer.
• Reliable and restartable data transfer.
• Data channel caching.
• Integrated instrumentation, for monitoring

ongoing transfer performance.
The Globus implementation of GridFTP [7] provides a

software suite optimized for the gamut of data access
issues—from bulk file transfer to the details of getting
the data out of complex storage systems within sites on
the Grid, and almost every data requirement in between.
To get the maximum performance from the GridFTP
server, users need to do some client-side optimizations.
Often, however, the users are unaware of these
optimizations or find it difficult to do them.

GridCopy, or GCP, provides a simple user interface to
this sophisticated functionality, and takes care of all
tuning required to get optimal performance for data
transfers. The primary contributions of GCP are
threefold:

1. Provide a SCP-style interface for high-
performance, reliable, secure data transfers

2. Transparently calculate the optimal TCP buffer
size and optimal number of parallel TCP
streams to maximize throughput

3. Support configurable URL translations to
optimize throughput

This paper is organized as follows. Section 2 describes
some limitations in TCP for transfers over long, fat

1-4244-0910-1/07/$20.00 ©2007 IEEE.

pipes. Section 3 discusses the motivation for developing
GridCopy. Section 4 gives an overview of GridCopy,
and Section 5 delves into design details. Section 6
contains experimental results. Section 7 briefly
summarizes the advantages of this new interface.

2. Background

By default, GridFTP uses TCP as its transport-level
communication protocol. In order to get maximal data
transfer throughput, it is critical to use optimal TCP send
and receive socket buffer sizes for the link being used. If
the buffers are too small, the TCP congestion window
never fully opens. If the receiver buffers are too large,
TCP flow control breaks, and the sender can overrun the
receiver, thereby causing the TCP window to shut. This
situation is likely to happen if the sending host is faster
than the receiving host. Overly large windows on the
sending side are not a big problem as long as excess
memory is available. The optimal buffer size is twice the
bandwidth-delay product (BDP) of the link.

 buffer size = 2 * bandwidth * delay
The drawback of TCP for the high-bandwidth and

high-latency networks, inherent in its AIMD-based
congestion control mechanism [10–12] is well known
[13–17]. The problem is that the number of packets in
flight can be large, and the time taken to recover from a
congestion event is directly proportional to the BDP.
Hence, TCP is not scale-invariant with respect to
bandwidth. For example, if we have a 200 ms path with
a capacity of 1 Gbit/s, it will take at least 28 minutes to
recover from a single congestion event (based on a
standard packet size of 1,500 bytes).

3. Motivation

To overcome existing TCP problems, we have
designed GridFTP to include features such as
establishing multiple TCP connections in parallel to
accelerate startup in the TCP slow start phase and to
accelerate the linear increase in the congestion avoidance
phase, and negotiating the TCP socket buffer size
between the GridFTP server and client according to the
bandwidth-delay product of a network. With existing
GridFTP clients such as globus-url-copy [18], uberftp
[19], and RFT [20], the user has to specify the
appropriate socket buffer size and the number of parallel
connections to get optimal performance with GridFTP.
This is not an easy task for many users.

Also, these clients require the user to know details
about how local and remote file systems are organized
and where local and remote GridFTP servers are
installed. Typically, users are familiar with the “secure
copy” command (scp) and prefer its simpler style of

specifying source and destination files, but this
command cannot attain the performance required by
Grid users.

These factors motivated the development of
GridCopy, which provides an SCP-style interface and
takes care of all required tuning.

4. Overview of GridCopy

GCP accepts SCP-style source and destination
specifications. Local paths can be relative or absolute;
remote paths look the same but have the hostname and a
colon as a prefix. If well-connected GridFTP servers can
access the source file and/or the destination file, GCP
translates the filenames into the corresponding names on
the GridFTP servers. (This procedure is explained in
Section 5.) In addition to translating the filenames/URLs
into GridFTP URLs, GCP adds appropriate protocol
parameters such as TCP buffer size and number of
parallel streams, in order to attain the optimal network
performance for the specific source and destination. GCP
initiates the data transfer using a GridFTP client such as
globus-url-copy or RFT.

If both the source and the destination are remote to the
client, then, in contrast to SCP, GCP performs the
transfer directly from the remote source to the remote
destination (a “third party transfer”) without any data
passing through the client system. The GCP command
also allows the source to be a directory, in which case
the entire contents of the directory are transferred to the
destination (which must also be a directory).

GCP offers a small number of command line options
in addition to the source and destination specifications.
The “-rft” option instructs GCP to use the Reliable File
Transfer (RFT) service to manage the transfer, which
allows the transfer to restart and continue to completion
in the event of failure in the client, the source or
destination GridFTP servers, or the RFT service itself.
The “-big” option instructs GCP to use a striped
GridFTP transfer, which uses multiple nodes at the
source and destination to consume more network
bandwidth for the transfer than a single system could use
by itself.

In addition to these two options, GCP accepts and
passes through any globus-url-copy or RFT options that
the user specifies. Most GCP users may not know what
these options are, but sophisticated users may customize
their transfers further by using these additional features.

5. GCP Design

Tools such as ping [21] and synack [22] can be used to
estimate end-to-end delay; and tools such as IGI [23],

1-4244-0910-1/07/$20.00 ©2007 IEEE.

pathChirp [24], STAB [25], abing [26], pathrate [27],
Iperf [28], pipechar [29], pchar [30], and Spruce [31] can
be used to estimate end-to-end bandwidth. Latency
estimation tools need to be run on one of the two nodes
between which the latency needs to be estimated.
Bandwidth estimation tools have two components. One
component needs to be run at one end, and the second
component needs to be run at the other end. Thus, these
tools cannot be used to estimate available bandwidth or
bottleneck capacity and delay between arbitrary hosts on
the Internet.

For data transfers between a client and server, the
tools mentioned above can be used to estimate the
bandwidth-delay product. However, in Grid
environments, users often perform third-party data
transfers, in which the client initiates transfers between
two servers. Sometimes third-party transfers are needed
to get optimal performance; furthermore, GridFTP’s
striping features can be used only in server-to-server
transfers. The end-to-end delay and bandwidth
estimation tools cited above are not useful for third-party
transfers. King [32], developed at the University of
Washington at Seattle, makes it possible to calculate the
round-trip time (RTT) between arbitrary hosts on the
Internet. GCP uses King to estimate the RTT between
source and destination nodes in a transfer. Estimating the
bandwidth between any two arbitrary hosts on the
Internet (without installing any tools on those hosts) is
difficult. Thus, GCP assumes a fixed one Gbit/s
bandwidth for all source and destination pairs.

King estimates RTT between any two hosts in the
Internet by estimating the RTT between their domain
name servers. To do this, King depends on the fact that
most domain name servers in the current Internet
(~75%–80%) support recursive queries from any host.
The accuracy of King depends crucially on another fact
about the domain name servers in the Internet. In many
cases the name servers are located close (in network
latency terms) to their hosts. While the first fact is the
result of a default choice by many name server
administrators, the second fact arises more out of
administrative convenience than anything else.

For example, if King estimates the RTT between the
source and the destination to be 50 ms, GCP sets the
TCP buffer size to 0.05 s * (1 Gbit / 8 bits) = 6.25 MB.
GCP caches the source, destination, and buffer size in
$HOME/.gcp/opts.conf. $HOME is the home directory
of the user running GCP. By default, GCP uses four
parallel streams for the first transfer between two sites
by a user. This value is configurable. GCP calculates the
TCP buffer size for each stream as follows:

BDP / max(1, streams / loss_factor),
where loss_factor is set to two, by default, to
accommodate for the fact that the streams that are hit by
congestion would go slower and the streams that are not

hit by congestion would go faster. Let us assume a
packet gets dropped on one stream. TCP backoff causes
the stream that dropped the packet to halve its
bandwidth. But as there are four streams, instead of
losing 1/2 the total bandwidth, we lose only 1/8. The
other streams will consume that now-free 1/8 if they
have sufficient buffer space. The loss_factor in the above
equation is used to provide the extra buffer space for the
streams to consume any additional bandwidth made
available as a result of some streams dropping a packet.

GCP caches the source, destination, number of
streams used, TCP buffer size for each stream, and
throughput obtained along with a “decrease streams”
flag set to one in $HOME/.gcp/opts.conf. This flag is
used to determine whether to decrease the number of
streams for the next transfer between the same
endpoints. For the subsequent transfer from the same
user between the same two endpoints, if “decrease flag”
is set, GCP reduces the number of parallel TCP streams
to one less than the value used previously. If the
throughput obtained is not less than 97% of the stored
throughput value, GCP overwrites the number of streams
used, updates TCP buffer size value and throughput
obtained for that source and destination pair, and leaves
the “decrease streams” flag on, if the number of streams
used is greater than one. Otherwise (if the throughput
obtained with three streams is less than 97% of the
throughput obtained with four streams), GCP just turns
the “decrease streams” flag off. If the “decrease streams”
flag is not set, GCP just uses the number of streams and
the TCP buffer size corresponding to the source,
destination pair in $HOME/.gcp/opts.conf.

GCP uses a configuration file to translate the user's
simple specification of source and destination into a
potentially complicated data movement request. The
configuration file provides a set of translation rules that
translate the source and destination specifications into
service instances and paths that are known to those
services. During this translation, the hostname may be
changed to use a “designated transfer service” for the
host that was originally specified (or the local system). A
port number may also be substituted. The system
administrators at each resource site in a virtual
organization, using their knowledge of the local system
configuration, must fill this configuration file uniquely.
A shared section provides translation rules to be applied
when using remote sites. This solution has scalability
issues. We plan to provide more scalable solutions using
MDS [33] and/or PubSub [34] models. System
administrators at individual sites can publish the
translation information to one or more of these services
and GCP can obtain the translation information from one
such service. The translation information has to be
replicated and/or distributed across multiple services
and/or locations to eliminate bottlenecks and single point

1-4244-0910-1/07/$20.00 ©2007 IEEE.

of failures. The translation information needs to be
cached locally, and the cache has to be kept as consistent
as possible.

If there is no translation corresponding to the source
and/or destination provided by the user, GCP will
attempt the transfer with the source and destination
URLs provided by the user. Also, if the user knows that
the source and/or destination URL(s) provided by him
are/is appropriate, he can turn off the translation of
source and/or destination URL(s).

6. Experimental Results

We compared the performance of GCP with globus-
url-copy (GUC) for both memory-to-memory transfers
and disk-to-disk transfers over three different network
links on the TeraGrid [35]:

1. A 4 ms RTT link between the University of
Chicago/Argonne National Laboratory and the
National Center for Supercomputing
Applications (NCSA)

2. A 15 ms RTT link between NCSA and the
Pittsburgh Supercomputing Center (PSC)

3. A 75 ms RTT link between PSC and the San
Diego Supercomputer Center

Figure 1: Comparison of performance of
memory-to-memory transfers in GCP with GUC
over a network with 4 ms RTT.

For all experiments we measured performance for a
range of transfer sizes from 1 Kbytes to 10 Gbytes. For
memory-to-memory experiments, we used /dev/zero as
source and /dev/null as destination. Each point in the
graphs represents an average throughput value of 50
transfers run a different times in a day. The “Globus-url-
copy” legend in Figures 1–6 refers to transfers done with
the default TCP buffer size (usually 64 KBytes). “GCP –
No Cache” refers to transfers done with GCP using the
bandwidth-delay product (BDP) as the TCP buffer size
and the BDP calculated using the delay computed with

King for each transfer. “GCP” refers to transfers done
with GCP using BDP as the TCP buffer size and the
BDP picked up from a local cache (as explained in
Section 5). In Figure 6, we also show “GUC – Non
Dedicated” results, corresponding to transfers between
login (rather than dedicated) nodes on both ends.

Figure 2: Comparison of performance of
memory-to-memory transfers in GCP with GUC
over a network with 15 ms RTT.

Figure 3: Comparison of performance of
memory-to-memory transfers in GCP with GUC
over a network with 75 ms RTT.

The “Globus-url-copy” values in Figure 3 and
“Globus-url-copy” and “GUC – Non Dedicated” values
in Figure 6 should be read on the secondary y-axis on the
right side. All experiments used just one TCP stream.
(GCP runs did not use its feature for tuning the number
of TCP streams used.) Furthermore, all experiments
except those labeled “GUC – Non Dedicated” legend in
Figure 6 transferred data between dedicated servers
(nodes that run GridFTP servers and are used only for
transferring data) on both ends. From Figures 1–6, we
see that GCP improves performance dramatically—by a
factor ranging from a low of three to more than two
orders of magnitude compared to GUC, with no
additional inputs other than just the source and

1-4244-0910-1/07/$20.00 ©2007 IEEE.

destination URLs from the user. The longer the RTT, the
higher is the improvement factor.

Figure 4: Comparison of performance of disk-
to-disk transfers in GCP with GUC over a
network with 4 ms RTT.

Figure 5: Comparison of performance of disk-
to-disk transfers in GCP with GUC over a
network with 15 ms RTT.

Figure 6: Comparison of performance of disk-
to-disk transfers in GCP with GUC over a
network with 75 ms RTT.

 As observed from Figures 1-6, throughput achieved
with ‘GCP - No Cache’ is slightly less than ‘GCP’ with
caching enabled. The reason for this is that ‘GCP - No
Cache’, for each transfer, runs ‘King’ to estimate the
latency between source and destination, whereas ‘GCP’
runs ‘King’ only once for each source, destination pair
(and caches the calculated value in the local file system)
and picks up the latency value stored in the local file
system for subsequent transfers between the same source
and destination.

The performance difference for smaller files (≤1 MB)
is not clearly visible in Figures 1–6. Thus, we show in
Table 1 the performance of GCP and GUC for smaller
files over a wide-area network with 15 ms RTT. For files
of size greater than or equal to 100 KB, GCP performs
better than GUC. For file sizes less than or equal to 10
KB, GUC is slightly better than GCP. The crossover
happens somewhere between 10 KB and 100 KB.
Similar performance trends are seen for small file
transfers over other networks. Because of space
constraints, we do not show performance data for small
files over other networks.

Table 1: Comparison of performance of small
files (files of size ≤1 MB) in GCP with GUC over
a network with 15 ms RTT.

XFER
SIZE

GCP
(B/s)

GCP-NC
(B/s)

GUC
(B/s)

1KB 283 200 304
10KB 2833 2427 3391

100KB 29596 26929 24489
1M 295819 259634 228358

7. Summary

GridCopy (GCP) provides a simple SCP-style
interface that enables users to transfer data efficiently
over wide area networks without manual configuration.
It allows system administrators to provide appropriate
translations so that well-connected nodes can be used to
perform fast data transfers. GCP can provide as much as
two orders of magnitude improvement in data transfer
performance relative to tools that do not perform such
automated configuration.

Acknowledgments

This work was supported in part by the Mathematical,
Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Dept. of
Energy, under Contract DE-AC02-06CH11357 and in
part by the National Science Foundation’s TeraGrid.

1-4244-0910-1/07/$20.00 ©2007 IEEE.

References

[1] I. Foster, C. Kesselman, and S. Tuecke, “The

anatomy of the Grid: Enabling scalable virtual
organization,” The International Journal of High
Performance Computing Applications, vol. 15, no.
3, pp. 200–222, Fall 2001.

[2] I. Foster and C. Kesselman, The Grid: Blueprint for
a new computing infrastructure. Morgan Kaufmann
Publishers Inc., 1999.

[3] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak,
I. Foster, C. Kesselman, S. Meder, V. Nefedova, D.
Quesnel, and S. Tuecke, “Data management and
transfer in high performance computational grid
environments,” Parallel Computing Journal, vol.
28, no. 5, pp. 749–771, 2002.

[4] ——, “Secure, efficient data transport and replica
management for high-performance data-intensive
computing,” in 18th IEEE Symposium on Mass
Storage Systems, San Diego, California, April 17–
20, 2001, pp. 13–28.

[5] W. Allcock, “GridFTP: Protocol extensions to FTP
for the grid,” Global Grid ForumGFD-R-P.020,
2003.

[6] W. Allcock, A. Chervenak, I. Foster, L. Pearlman, V.
Welch, and M. Wilde, “Globus Toolkit support for
distributed data-intensive science,” in International
Conference on Computing in High Energy and
Nuclear Physics, Beijing, China, September 2001.

[7] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link,
C. Dumitrescu, I. Raicu, and I. Foster, “The Globus
striped GridFTP framework and server,” in SC'05,
ACM Press, 2005.

[8] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and
M. Thompson, “RFC 3820: Internet X.509 Public
Key Infrastructure (PKI) Proxy Certificate Profile”
June 2004

[9] J. Postel, “RFC 793: Transmission Control
Protocol,” September 1981

[10] V. Jacobson, “Congestion avoidance and control,”
ACM SIGCOMM Computer Communication
Review, vol. 18, no. 4, pp. 314–329, 1988.

[11] M. Allman, V. Paxson, and W. Stevens, “RFC
2581: TCP Congestion Control,” 1999.

[12] S. Floyd and T. Henderson, “RFC 2582: The
NewReno Modification to TCP’s Fast Recovery
Algorithm,” 1999.

[13] D. Katabi, M. Handley, and C. Rohrs, “Internet
congestion control for future high bandwidth-delay
product environments,” in ACM SIGCOMM,
2002.

[14] S. Floyd, “HighSpeed TCP for large congestion
windows,” RFC 3649, Experimental, December
2003.

[15] T. Kelly, “Scalable TCP: Improving performance
in highspeed wide area networks,” SIGCOMM
Computer Communication Review, vol. 33, no. 2,
pp. 83–91, 2003.

[16] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP:
Motivation, architecture, algorithms, performance,”
in IEEE Infocom, March 2004.

[17] D. J. Leith and R. Shorten, “H-TCP protocol for
high-speed long distance networks,” in Second
International Workshop on Protocols for Fast
Long-Distance Networks, Argonne, IL, Feb, 2004.

[18] http://www.globus.org/toolkit/docs/4.0/data/
gridftp/rn01re01.html

[19] http://dims.ncsa.uiuc.edu/set/uberftp/
[20] Ravi K. Madduri, Cynthia S. Hood, and William E.

Allcock, “Reliable file transfer in Grid
environments,” in 27th Annual IEEE Conference on
Local Computer Networks (LCN 2002), 2002, pp.
737–738

[21] http://www.ping127001.com/pingpage.htm
[22] http://www-iepm.slac.stanford.edu/tools/synack/
[23] http://www.cs.cmu.edu/~hnn/igi/
[24] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and

L. Cottrell, “pathchirp: Efficient available
bandwidth estimation for network paths,” in
Passive and Active Measurement Workshop
(2003).

[25] Vinay Ribeiro, Rudolf Riedi, and Richard
Baraniuk, “Locating available bandwidth
bottlenecks,” IEEE Internet Computing, vol. 8, no.
5, pp. 34–41, September–October 2004.

[26] http://www-
iepm.slac.stanford.edu/tools/abing/current/_READ
ME

[27] http://www-
static.cc.gatech.edu/fac/Constantinos.Dovrolis/path
rate.html

[28] http://dast.nlanr.net/Projects/Iperf/
[29] http://www-

iepm.slac.stanford.edu/bw/pipechar.html
[30] http://www.kitchenlab.org/www/bmah/Software/

pchar/
[31] http://project-iris.net/spruce/
[32] K. P. Gummadi, S. Saroiu, S., and S. D. Gribble,

“King: Estimating latency between arbitrary
internet end hosts,” SIGCOMM Computer
Communication Review, vol. 32, no. 3, pp. 5–18,
July 2002.

[33] http://www.globus.org/toolkit/mds/#mds_gt4
[34] http://www.pubsub.com/
[35] http://www.teragrid.org/

